78 research outputs found

    Inoculated mammary carcinoma-associated fibroblasts: contribution to hormone independent tumor growth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing evidence has underscored the role of carcinoma associated fibroblasts (CAF) in tumor growth. However, there are controversial data regarding the persistence of inoculated CAF within the tumors. We have developed a model in which murine metastatic ductal mammary carcinomas expressing estrogen and progesterone receptors transit through different stages of hormone dependency. Hormone dependent (HD) tumors grow only in the presence of progestins, whereas hormone independent (HI) variants grow without hormone supply. We demonstrated previously that CAF from HI tumors (CAF-HI) express high levels of FGF-2 and that FGF-2 induced HD tumor growth <it>in vivo</it>. Our main goal was to investigate whether inoculated CAF-HI combined with purified epithelial (EPI) HD cells can induce HD tumor growth.</p> <p>Methods</p> <p>Purified EPI cells of HD and HI tumors were inoculated alone, or together with CAF-HI, into female BALB/c mice and tumor growth was evaluated. In another set of experiments, purified EPI-HI alone or combined with CAF-HI or CAF-HI-GFP were inoculated into BALB/c or BALB/c-GFP mice. We assessed whether inoculated CAF-HI persisted within the tumors by analyzing inoculated or host CAF in frozen sections of tumors growing in BALB/c or BALB/c-GFP mice. The same model was used to evaluate early stages of tumor development and animals were euthanized at 2, 7, 12 and 17 days after EPI-HI or EPI-HI+CAF-HI inoculation. In angiogenesis studies, tumor vessels were quantified 5 days after intradermal inoculation.</p> <p>Results</p> <p>We found that admixed CAF-HI failed to induce epithelial HD tumor growth, but instead, enhanced HI tumor growth (p < 0.001). Moreover, inoculated CAF-HI did not persist within the tumors. Immunofluorescence studies showed that inoculated CAF-HI disappeared after 13 days. We studied the mechanisms by which CAF-HI increased HI tumor growth, and found a significant increase in angiogenesis (p < 0.05) in the co-injected mice at early time points.</p> <p>Conclusions</p> <p>Inoculated CAF-HI do not persist within the tumor mass although they play a role during the first stages of tumor formation promoting angiogenesis. This angiogenic environment is unable to replace the hormone requirement of HD tumors that still need the hormone to recruit the stroma from the host.</p

    Effects of FVB/NJ and C57Bl/6J strain backgrounds on mammary tumor phenotype in inducible nitric oxide synthase deficient mice

    Get PDF
    The ability to genetically manipulate mice has led to rapid progress in our understanding of the roles of different gene products in human disease. Transgenic mice have often been created in the FVB/NJ (FVB) strain due to its high fecundity, while gene-targeted mice have been developed in the 129/SvJ-C57Bl/6J strains due to the capacity of 129/SvJ embryonic stem cells to facilitate germline transmission. Gene-targeted mice are commonly backcrossed into the C57Bl/6J (B6) background for comparison with existing data. Genetic modifiers have been shown to modulate mammary tumor latency in mouse models of breast cancer and it is commonly known that the FVB strain is susceptible to mammary tumors while the B6 strain is more resistant. Since gene-targeted mice in the B6 background are frequently bred into the polyomavirus middle T (PyMT) mouse model of breast cancer in the FVB strain, we have sought to understand the impact of the different genetic backgrounds on the resulting phenotype. We bred mice deficient in the inducible nitric oxide synthase (iNOS) until they were congenic in the PyMT model in the FVB and B6 strains. Our results reveal that the large difference in mean tumor latencies in the two backgrounds of 53 and 92 days respectively affect the ability to discern smaller differences in latency due to the Nos2 genetic mutation. Furthermore, the longer latency in the B6 strain enables a more detailed analysis of tumor formation indicating that individual tumor development is not stoichastic, but is initiated in the #1 glands and proceeds in early and late phases. NO production affects tumors that develop early suggesting an association of iNOS-induced NO with a more aggressive tumor phenotype, consistent with human clinical data positively correlating iNOS expression with breast cancer progression. An examination of lung metastases, which are significantly reduced in PyMT/iNOS(−/−) mice compared with PyMT/iNOS(+/+) mice only in the B6 background, is concordant with these findings. Our data suggest that PyMT in the B6 background provides a useful model for the study of inflammation-induced breast cancer

    A mouse model for Luminal epithelial like ER positive subtype of human breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Generation of novel spontaneous ER positive mammary tumor animal model from heterozygous NIH nude mice.</p> <p>Methods</p> <p>Using brother-sister mating with pedigree expansion system, we derived a colony of heterozygous breeding females showing ER-Positive tumors around the age of 6 months. Complete blood picture, differential leukocyte count, and serum levels of Estrogen, Alanine amino transferase (SGPT), Aspartate amino transferase (SGOT), total protein and albumin were estimated. Aspiration biopsies and microbiology were carried out. Gross pathology of the tumors and their metastatic potential were assessed. The tumors were excised and further characterized using histopathology, cytology, electron microscopy (EM), molecular markers and Mouse mammary Tumor Virus – Long Terminal Repeats (MMTV LTR) specific RT-PCR.</p> <p>Results</p> <p>The tumors originated from 2<sup>nd</sup>or 5<sup>th</sup>or both the mammary glands and were multi-nodulated with variable central necrosis accompanied with an accumulation of inflammatory exudate. Significant increases in estrogen, SGPT, SGOT and neutrophils levels were noticed. Histopathologically, invasive nodular masses of pleomorphic tubular neoplastic epithelial cells invaded fibro-vascular stroma, adjacent dermis and subcutaneous tissue. Metastatic spread through hematogenous and regional lymph nodes, into liver, lungs, spleen, heart and dermal lymphatics was observed. EM picture revealed no viral particles and MMTV-negativity was confirmed through MMTV LTR-specific RT-PCR. High expression of ER α, moderate to high expression of proliferating cell nuclear antigen (PCNA), moderate expression of vimentin and Cytokeratin 19 (K19) and low expression of p53 were observed in tumor sections, when compared with that of the normal mammary gland.</p> <p>Conclusion</p> <p>Since 75% of human breast cancer were classified ER-positive and as our model mimics (in most of the characteristics, such as histopathology, metastasis, high estrogen levels) the ER-positive luminal epithelial-like human breast cancer, this model will be an attractive tool to understand the biology of estrogen-dependant breast cancer in women. To our knowledge, this is the first report of a spontaneous mammary model displaying regional lymph node involvement with both hematogenous and lymphatic spread to liver, lung, heart, spleen and lymph nodes.</p

    Efficient Targeting of Head and Neck Squamous Cell Carcinoma by Systemic Administration of a Dual uPA and MMP-Activated Engineered Anthrax Toxin

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Although considerable progress has been made in elucidating the etiology of the disease, the prognosis for individuals diagnosed with HNSCC remains poor, underscoring the need for development of additional treatment modalities. HNSCC is characterized by the upregulation of a large number of proteolytic enzymes, including urokinase plasminogen activator (uPA) and an assortment of matrix metalloproteinases (MMPs) that may be expressed by tumor cells, by tumor-supporting stromal cells or by both. Here we explored the use of an intercomplementing anthrax toxin that requires combined cell surface uPA and MMP activities for cellular intoxication and specifically targets the ERK/MAPK pathway for the treatment of HNSCC. We found that this toxin displayed strong systemic anti-tumor activity towards a variety of xenografted human HNSCC cell lines by inducing apoptotic and necrotic tumor cell death, and by impairing tumor cell proliferation and angiogenesis. Interestingly, the human HNSCC cell lines were insensitive to the intercomplementing toxin when cultured ex vivo, suggesting that either the toxin targets the tumor-supporting stromal cell compartment or that the tumor cell requirement for ERK/MAPK signaling differs in vivo and ex vivo. This intercomplementing toxin warrants further investigation as an anti-HNSCC agent

    Controversies surrounding human papilloma virus infection, head & neck vs oral cancer, implications for prophylaxis and treatment

    Get PDF
    Head & Neck Cancer (HNC) represents the sixth most common malignancy worldwide and it is historically linked to well-known behavioural risk factors, i.e., tobacco smoking and/or the alcohol consumption. Recently, substantial evidence has been mounting that Human Papillomavirus (HPV) infection is playing an increasing important role in oral cancer. Because of the attention and clamor surrounding oral HPV infection and related cancers, as well as the use of HPV prophylactic vaccines, in this invited perspective the authors raise some questions and review some controversial issues on HPV infection and its role in HNC, with a particular focus on oral squamous cell carcinoma

    Blimp1 Activation by AP-1 in Human Lung Cancer Cells Promotes a Migratory Phenotype and Is Inhibited by the Lysyl Oxidase Propeptide

    Get PDF
    B lymphocyte-induced maturation protein 1 (Blimp1) is a master regulator of B cell differentiation, and controls migration of primordial germ cells. Recently we observed aberrant Blimp1 expression in breast cancer cells resulting from an NF-κB RelB to Ras signaling pathway. In order to address the question of whether the unexpected expression of Blimp1 is seen in other epithelial-derived tumors, we selected lung cancers as they are frequently driven by Ras signaling. Blimp1 was detected in all five lung cancer cell lines examined and shown to promote lung cancer cell migration and invasion. Interrogation of microarray datasets demonstrated elevated BLIMP1 RNA expression in lung adenocarcinoma, pancreatic ductal carcinomas, head and neck tumors as well as in glioblastomas. Involvement of Ras and its downstream kinase c-Raf was confirmed using mutant and siRNA strategies. We next addressed the issue of mechanism of Blimp1 activation in lung cancer. Using knockdown and ectopic expression, the role of the Activator Protein (AP)-1 family of transcription factors was demonstrated. Further, chromatin immunoprecipitation assays confirmed binding to identified AP-1 elements in the BLIMP1 promoter of ectopically expressed c-Jun and of endogenous AP-1 subunits following serum stimulation. The propeptide domain of lysyl oxidase (LOX-PP) was identified as a tumor suppressor, with ability to reduce Ras signaling in lung cancer cells. LOX-PP reduced expression of Blimp1 by binding to c-Raf and inhibiting activation of AP-1, thereby attenuating the migratory phenotype of lung cancer cells. Thus, Blimp1 is a mediator of Ras/Raf/AP-1 signaling that promotes cell migration, and is repressed by LOX-PP in lung cancer

    Contemporary management of cancer of the oral cavity

    Get PDF
    Oral cancer represents a common entity comprising a third of all head and neck malignant tumors. The options for curative treatment of oral cavity cancer have not changed significantly in the last three decades; however, the work up, the approach to surveillance, and the options for reconstruction have evolved significantly. Because of the profound functional and cosmetic importance of the oral cavity, management of oral cavity cancers requires a thorough understanding of disease progression, approaches to management and options for reconstruction. The purpose of this review is to discuss the most current management options for oral cavity cancers
    corecore